The following are sample calculations for a Rosetta Hardscapes block gravity wall with cast-in-place concrete backfill. They are intended to serve as reference information for Design Professionals only. Wall design requires a detailed understanding of engineering concepts, and must be prepared by a Licensed Professional Engineer. Global stability has not been checked, and must be addressed by the Professional Engineer responsible for final wall design. These preliminary calculations assume fully drained conditions. Final wall design shall address both internal and external drainage.

DESIGN BLOCK PROPERTIES

- $h_{\text{block}} = 12''$
- $W_{\text{block}} = 17.3''$ (average width)
- $L_{\text{block}} = 65.8''$
- $G_{U} = 8.1''$ (from theoretical toe)
- $\gamma_{\text{block}} = 140 \text{ lb/ft}^3$
- Block Setback = 3° horizontal
- Interface shear = $360 + N \tan 26\degree \text{ lb/ft}$

SOIL PROPERTIES

(Retained and Foundation Soil)

- $\phi = 28\degree$, $c = 0 \text{ lb/ft}^2$, $\gamma = 120 \text{ lb/ft}^3$

CRUSHED STONE LEVELING PAD

- $\phi_{LP} = 40\degree$, $c_{LP} = 0 \text{ lb/ft}^2$, $\gamma_{LP} = 130 \text{ lb/ft}^3$

CONCRETE BACKFILL

- $f'_{c} = 2500 \text{ lb/ft}^2$, $\gamma = 140 \text{ lb/ft}^3$

EARTH PRESSURE COEFFICIENTS

(Coefficients for Analysis of Full Height Wall Section)

- $\phi = 28\degree$, $\delta = 2/3 \phi = 18.7\degree$, $\omega = 0\degree$, $\beta = 21.8\degree$
- Coulomb active earth pressure coefficient, $k_a = 0.4878$
- Coulomb inclination of failure surface, $\alpha = 44.2\degree$

WALL SLIDING CHECK

(Sliding Calculations made at the base of the stone leveling pad, neglecting any soil in front of wall)

Earth Pressure Forces Acting on Wall

- $P_a = k_a \times \frac{1}{2} \times \gamma \times H^2 = 0.4878 \times 0.5 \times 120 \times 8.7^2 = 2215.3 \text{ lb/ft}$
- $P_{ah} = P_a \cos (\delta - \omega) = 2215.3 \times \cos 18.7\degree = 2098.4 \text{ lb/ft}$ (horizontal component)
- $P_{av} = P_a \sin (\delta - \omega) = 2215.3 \times \sin 18.7\degree = 710.2 \text{ lb/ft}$ (vertical component)

Weight Calculations

- Weight of Concrete Blocks = $7 \times (1' \times 1.44') \times 140 \text{ lb/ft}^3 = 1411.2 \text{ lb/ft}$
- Weight of Poured-In-Place Concrete = $(4.0''+4.25''+4.5'') \times (1') \times 140 \text{ lb/ft}^3 = 1785 \text{ lb/ft}$
- Weight of Soil Above Concrete = $[(3.0''+3.25''+3.5''+3.75'') \times (1')] + (1/2 \times 3.0' \times 1.2')] \times 120 \text{ lb/ft}^3 = 1836 \text{ lb/ft}$
- Weight of Crushed Stone = $(0.5' \times 5.94') \times 130 \text{ lb/ft}^3 = 386.1 \text{ lb/ft}$
WALL SLIDING CHECK - CONTINUED
Sliding Resistance, \(RS_d = (\Sigma W + P_{av}) \times \tan \phi_t + W_{block} \times c_f \)
\(RS_d = (1411.2 + 1785 + 1836 + 386.1 + 710.2) \times \tan 28^\circ + 1.44 \times 0 \)
\(RS_d = 3258.6 \text{ lb/ft} \)
Factor of Safety Against Sliding, \(FS_{SL} = \frac{RS_d}{P_{an}} = 3258.6 / 2098.4 = 1.55 > 1.5 \) - OK for Sliding

WALL OVERTURNING CHECK
(Overturning calculations made at the toe of the wall on the bottom of the stone leveling pad, neglecting any soil in front of wall)

Location of Forces for Moment Calculation
Rosetta Blocks
\(X_u = G_u + 1/2 \times (H - h_{block}) \times \tan \omega_{blocks} = 0.675 + 1/2 \times (7.0 - 1.0) \times \tan 14.0^\circ = 1.425' \)

Cast-In-Place Concrete
\(X_{conc} = \frac{[(4.0 \times 1) \times 3.940' + (4.25 \times 1) \times 3.815' + (4.5 \times 1) \times 3.690']}{[(4.0 \times 1) + (4.25 \times 1) + (4.5 \times 1)]} = 3.810' \)

Crushed Stone Leveling Pad
\(X_{stone} = L_{stone} / 2 = 2.97' \)

Soil Above C.I.P. Concrete
\(X_{soil} = \frac{[(1/2 \times x3.0' \times 1.2') \times 4.94' + (3.0' \times 1') \times 4.44' + (3.25' \times 1') \times 4.315' + (3.5' \times 1') \times 4.16' + (3.75' \times 1') \times 4.065']}{[(1/2 \times 3.0' \times 1.2') + (3.0' \times 1') + (3.25' \times 1') + (3.5' \times 1') + (3.75' \times 1')] \}
= 4.316'

Horizontal Component of Earth Pressure Force
\(X_{Pah} = 1/3 \times H = 1/3 \times 8.7 = 2.90' \)

Vertical Component of Earth Pressure Force
\(X_{Pav} = L_{stone} = 5.94' \)

Overturning Moment
\(M_{OT} = P_{an} \times X_{Pah} = 2098.4 \times 2.90 = 6085.4 \text{ lb ft / ft} \)

Resisting Moment
\(M_{resist} = \Sigma (W_i \times x_i) + P_{av} \times X_{Pav} = (1411.2 \times 1.425 + 1785 \times 3.810 + 1836 \times 4.316 + 386.1 \times 2.97) + 710.2 \times 5.94 = 22101.3 \text{ lb ft / ft} \)

Factor of Safety Against Overturning, \(FS_{OT} = \frac{M_{resist}}{M_{OT}} = 22101.3 / 6085.4 = 3.63 > 1.5 \) - OK for Overturning
BEARING CAPACITY CHECK
Moment Arm for Foundation Reaction, \(X_o = \Sigma \) Moments / \(\Sigma \) Vertical Forces
\[X_o = \frac{(22101.3 - 6085.4)}{(1411.2 + 1785 + 1836 + 386.1 + 710.2)} = 2.61 \text{ ft} \]

Eccentricity of Resultant Vertical Bearing Force, \(e = B/2 - X_o = 5.94/2 - 2.61 = 0.36 \text{ ft} \)

Equivalent Footing Width for Eccentrically Loaded Wall, \(B'_e = L_{\text{stone}} - 2e = 5.94 - 2 \times 0.36 = 5.22 \text{ ft} \)

Ultimate Bearing Capacity of the Foundation Soil,
\[Q_{\text{ult}} = c_{f} N_c + \frac{1}{2} \gamma t B'_e N_f + \gamma_t H_{emb} N_q \]
From Figure 4-5, Bearing Capacity Factors from NCMA’s Design Manual for Segmental Retaining Walls, 2nd Edition: \(\phi = 28^\circ, N_c = 25.80, N_f = 16.72, N_q = 14.72 \)
\[Q_{\text{ult}} = 0 + \frac{1}{2} \times 120 \times 5.22 \times 16.72 + 120 \times 0.5 \times 14.72 = 6119.9 \text{ lb/ft}^2 \]

Applied Bearing Pressure,
\[Q_a = \Sigma \text{Vertical Forces} / B'_e = 6128.5 / 5.22 = 1174.0 \text{ lb/ft}^2 \]

Factor of Safety Against Bearing Capacity Failure, \(FS_{\text{Bearing}} = \frac{Q_{\text{ult}}}{Q_a} = 6119.9 / 1174.0 = 5.21 > 2.0 \)
- OK for Bearing Capacity of Foundation Soils

INTERNAL STABILITY CHECKS ON BLOCK 4-5 INTERFACE
(Check block interface immediately above the Cast-In-Place Concrete Layer)

EARTH PRESSURE COEFFICIENTS
(Coefficients for Analysis of Internal Block Interface Above Cast-In-Place Concrete Layer)
\(\phi = 28^\circ, \delta = 2/3 \phi = 18.7^\circ, \omega = 14^\circ, \beta = 21.8^\circ \)
Coulomb active earth pressure coefficient, \(k_a = 0.3417 \)
Coulomb inclination of failure surface, \(\alpha = 41.8^\circ \)

INTERFACE SHEAR CHECK ON THE BLOCK 4-5 INTERFACE
(Check Interface Shear Capacity of Block Above Cast-In-Place Concrete Layer)

Earth Pressure Forces Acting on Wall
\[P_{a(4)} = k_a \times \gamma \times H^2 = 0.3417 \times 0.5 \times 120 \times 4.0^2 = 328.0 \text{ lb/ft} \]
\[P_{ah(4)} = P_{a(4)} \cos (\delta-\omega) = 328.0 \times \cos 4.7^\circ = 326.9 \text{ lb/ft} \]
\[P_{av(4)} = P_{a(4)} \sin (\delta-\omega) = 328.0 \times \sin 4.7^\circ = 26.9 \text{ lb/ft} \]

Interface Shear Capacity
\[V_{u(4)} = 360 + (W_{w(4)} + P_{av(4)}) \tan 26^\circ \]
INTERFACE SHEAR CHECK - CONTINUED

\[W_{w(4)} = 4 \times (1' \times 1.44') \times 140 \text{ lb/ft}^3 = 806.4 \text{ lb/ft} \]

\[V_u(4) = 360 + (806.4 + 26.9) \tan 26^\circ = 766.4 \text{ lb/ft} \]

Factor of Safety Against Shear Capacity Failure, \(FS_{\text{s, shear}(4)} = \frac{V_u(4)}{P_{a\bar{h}(4)}} = \frac{766.4}{326.9} = 2.34 > 1.5 \)
- OK for Interface Shear Capacity Between Layers 4 and 5

OVERTURNING CHECK ON THE BLOCK 4-5 INTERFACE

(Check Overturning Capacity of Portion of Wall Above Cast-In-Place Concrete Layer)

Location of Forces for Moment Calculation From the Theoretical Toe on Block 4

Rosetta Blocks: \(X_{u(4)} = G_u + 1/2 \times (h_{(4)} - h_{\text{block}}) \times \tan \omega_{\text{blocks}} = 0.675 + 1/2 \times (4.0-1.0) \times \tan 14.0^\circ = 1.05 \text{ ft} \)

Horizontal Component of Earth Pressure Force: \(X_{P_{a\bar{h}(4)}} = 1/3 \times h_{(4)} = 1/3 \times 4.0 = 1.33 \text{ ft} \)

Vertical Component of Earth Pressure Force: \(X_{P_{av(4)}} = W_{\text{block}} + (1/3 \times h_{(4)}) \tan \omega_{\text{blocks}} = 1.44 + (1/3 \times 4) \tan 14^\circ = 1.77 \text{ ft} \)

Overturning Moment
\[M_{OT(4)} = P_{a\bar{h}(4)} \times X_{P_{a\bar{h}(4)}} = 326.9 \times 1.33 = 434.8 \text{ lb ft / ft} \]

Resisting Moment
\[M_{\text{resist}(4)} = W_{w(4)} \times X_{u(4)} + P_{av(4)} \times X_{P_{av(4)}} = 806.4 \times 1.05 + 26.9 \times 1.77 = 894.3 \text{ lb ft / ft} \]

Factor of Safety Against Overturning, \(FS_{OT(4)} = \frac{M_{\text{resist}(4)}}{M_{OT(4)}} = \frac{894.3}{434.8} = 2.06 > 1.5 \)
- OK for Overturning Between Layers 4 and 5

SUMMARY

- 7' High Rosetta Block Wall
- Concrete Backfill to Extend 4.5' Behind Bottom Block and 3.0' Above Crushed Stone Leveling Pad
- See Site Specific Design for Full Details