TYPICAL NON-REINFORCED TIERED WALL SECTION ON SLOPE

- **Notes:**
 1. Generally, \(H_1 \geq H_2 \).
 2. Tier offset \(\geq 2 \times H_1 \) without affecting bottom tier. Smaller tier offset is possible with site-specific engineering.
 3. Steeper top and toe slopes possible with site-specific engineering.
 4. Global stability often controls tiered wall design. Geotechnical engineer should analyze slope stability with site-specific conditions.
 5. Bench width may vary depending on slope angle and other factors, as necessary to achieve adequate bearing capacity and slope stability.
 6. All details shown apply to both tiers.
 7. Block sizes and placement shown are for reference only. Individual outcropping blocks will vary with installation pattern.
 8. This drawing is for reference only, not for construction.
 9. Final design for construction must be prepared by a registered professional engineer using actual conditions of the proposed site.
 10. Final wall design must address both internal and external drainage and shall be evaluated by the professional engineer who is responsible for the wall design.

- **Design Details:**
 - **Tier 1:**
 - Design Height, \(H_1 \) (Varies)
 - Exposed Wall Face (Varies)
 - Compacted Backfill Soil to Min. 95% Max. Dry Density
 - Foundation Soil as Specified by Engineer (Compact to Min. 95% Max. Dry Density)
 - Non-Woven Geotextile Fabric to be Installed at Back of Blocks and on Top of Drainstone (Recommended)
 - Crushed Stone Leveling Pad
 - Bury Depth (Varies, 0.5' (0.15 m) Min.)
 - Leveling Pad (Varies, 0.5' (0.15 m) Min.)
 - Non-Woven Geotextile Fabric Between Retained Soil and Stone (Recommended)
 - Global Stability Check by Geotechnical Engineer

 - **Tier 2:**
 - Design Height, \(H_2 \) (Varies)
 - Exposed Wall Face (Varies)
 - Compacted Backfill Soil to Min. 95% Max. Dry Density
 - Foundation Soil as Specified by Engineer (Compact to Min. 95% Max. Dry Density)
 - Non-Woven Geotextile Fabric Between Retained Soil and Stone (Recommended)
 - Crushed Stone Leveling Pad
 - Bury Depth (Varies, 0.5' (0.15 m) Min.)
 - Leveling Pad (Varies, 0.5' (0.15 m) Min.)
 - Non-Woven Geotextile Fabric Between Retained Soil and Stone (Recommended)
 - Global Stability Check by Geotechnical Engineer

- **General Notes:**
 - Grade to drain away from wall and prevent surface ponding (typical, top and bottom of all tiers).
 - Move blocks forward during installation to engage shear heels.
 - Move blocks forward during installation to engage shear heels (optional).
 - Leveling pad (Varies, 0.5' (0.15 m) Min.)
 - Bury depth (Varies, 0.5' (0.15 m) Min.)
 - Notes:
 1. Generally, \(H_1 \geq H_2 \).
 2. Tier offset \(\geq 2 \times H_1 \) without affecting bottom tier. Smaller tier offset is possible with site-specific engineering.
 3. Steeper top and toe slopes possible with site-specific engineering.
 4. Global stability often controls tiered wall design. Geotechnical engineer should analyze slope stability with site-specific conditions.
 5. Bench width may vary depending on slope angle and other factors, as necessary to achieve adequate bearing capacity and slope stability.
 6. All details shown apply to both tiers.
 7. Block sizes and placement shown are for reference only. Individual outcropping blocks will vary with installation pattern.
 8. This drawing is for reference only, not for construction.
 9. Final design for construction must be prepared by a registered professional engineer using actual conditions of the proposed site.
 10. Final wall design must address both internal and external drainage and shall be evaluated by the professional engineer who is responsible for the wall design.